Foci ± 3 5 0 the latus rectum is of length 8
WebExample 2: Finding the Equation of a Hyperbola Centered at (0,0) Given its Foci and Vertices ... (0, ± 2 5) ? \left(0,\pm 2\sqrt ... by solving for the length of the transverse axis, 2 a 2a 2 a, which is the distance between the given vertices. Find . c 2 {c}^{2} c … WebFeb 9, 2024 · 1 Answer. Foci, (±3√5,0), the latus rectum is of length 8. Here, the foci are on the x-axis. Therefore, the equation of the hyperbola is of the form X 2 /a 2 - Y 2 /b 2 =1. We know that a 2 + b 2 = c 2 . Since a …
Foci ± 3 5 0 the latus rectum is of length 8
Did you know?
WebIf the latus rectum of an hyperbola be 8 and eccentricity is 53 then the equation of the hyperbola can be A 4x 2−5y 2=100 B 5x 2−4y 2=100 C 4x 2+5y 2=100 D 5x 2+4y 2=100 … Web3 x 2 + 5 y 2 + 3 2 = 0. Medium. Open in App. Solution. Verified by Toppr. Correct option is B) ... The equation of the ellipse whose centre is at origin, major axis is along x-axis with eccentricity 4 3 and latus rectum 4 units is. Medium. View solution > View more. CLASSES AND TRENDING CHAPTER. class 5.
WebSolution Foci (±4, 0), the latus rectum is of length 12. Here, the foci are on the x -axis. Therefore, the equation of the hyperbola is of the form. Since the foci are (±4, 0), c = 4. Length of latus rectum = 12 We know that a2 + b2 = c2. ∴ a2 + 6 a = 16 ⇒ a2 + 6 a – 16 = 0 ⇒ a2 + 8 a – 2 a – 16 = 0 ⇒ ( a + 8) ( a – 2) = 0 ⇒ a = –8, 2 WebThe given coordinates of foci are (± 3 5, 0).and length of latus rectum is 8. Since the foci are on the x axis, the equation of the hyperbola is represented as, x 2 a 2 − y 2 b 2 = 1, …
WebTherefore, the length of the latus rectum of an ellipse is given as: = 2b 2 /a = 2 (2) 2 /3 = 2 (4)/3 = 8/3 Hence, the length of the latus rectum of ellipse is 8/3. For more Maths-related articles and solved problems, register with BYJU’S – The Learning App and download the app to learn with ease. Quiz on Latus rectum Start Quiz WebMar 9, 2024 · Length of the latus rectum: Length of the latus rectum = 2a 2 /b (when a 2 < b 2) = 2×4/5 = 8/5 Question 3. = 1 Solution: Since denominator of x 2 /16 is larger than the denominator of y 2 /9, the major axis is along the x-axis. Comparing the given equation with = 1, we get a 2 = 16 and b 2 = 9 ⇒ a = ±4 and b = ±3 The Foci:
WebFind the equation of the ellipse in the following cases:i eccentricity e =1/2 and foci ± 2,0ii eccentricity e =2/3 snd length of latus rectum =5iii eccentricity e =1/2 and semi major axis =4iv eccentricity e =1/2 and major axis =12v The ellipse passes through 1,4 and 6,1.vi Vertices ± 5,0, foci ± 4,0vii Vertices 0, ± 13, foci 0, ± 5viii Vertices ± 6,0, foci ± 4,0ix …
WebMar 6, 2024 · Solution: To find the equation of an ellipse, we need the values a and b. Now, it is known that the sum of the distances of a point lying on an ellipse from its foci is equal to the length of its major axis, 2a. The value of a can be calculated by this property. To calculate b, use the formula c 2 = a 2 – b 2. csn bernWebHyperbola (TN) - Free download as PDF File (.pdf), Text File (.txt) or read online for free. 1ST LECTURE 1. General equation : ax2 + 2hxy + by2 + 2gx + 2fy + c = 0 denotes a hyperbola if h2 > ab and e > 1. 2. STANDARD EQUATION AND BASIC TERMINOLOGY : Standard equation of hyperbola is deduced using an important property of hyperbola that … eagles wide receiverWebMar 16, 2024 · Example 10Find the coordinates of the foci, the vertices, the lengths of major and minor axes and the eccentricity of the ellipse 9x2 + 4y2 = 36.Given 9x2 + 4y2 = 36Dividing whole equation by 36 9𝑥2 + 4𝑦236 = 3636 936x2 + 4𝑦236 = 1 𝑥24 + 𝑦29 = 1Si eagles whistleWebFeb 1, 2024 · A Computer Science portal for geeks. It contains well written, well thought and well explained computer science and programming articles, quizzes and practice/competitive programming/company interview Questions. eagles whole in the worldWebFeb 20, 2024 · Foci: A hyperbola has two foci whose coordinates are F(c, o), and F'(-c, 0). Center of a Hyperbola: The centre of a hyperbola is the midpoint of the line that joins the two foci. Major Axis: The length of the major axis of a hyperbola is 2a units.; Minor Axis: The length of the minor axis of a hyperbola is 2b units. Vertices: The points of intersection of … csn behavioral healthWebJEE Main Past Year Questions With Solutions on Hyperbola. Question 1: The locus of a point P(α, β) moving under the condition that the line y = αx + β is a tangent to the hyperbola x2/a2 – y2/b2 = 1 is (a) an ellipse (b) a circle (c) a hyperbola (d) a parabola Answer: (c) Solution: Tangent to the hyperbola x2/a2 – y2/b2 = 1 is y = mx ± √(a2m2 – b2) Given that … eagles who wonWebMar 30, 2024 · Hence, the required equation of the hyperbola is 𝒙𝟐/𝒂𝟐 – 𝒚𝟐/𝒃𝟐 = 1 Now, coordinates of foci are (±c, 0) & given foci = (±4, 0) so, (±c,0) = (±4,0) c = 4 Now, Latus rectum =2𝑏2/𝑎 Given latus rectum = 12 So, 2𝑏2/𝑎=12 2b2 = 12a b2 = 6a We know that c2 = a2 + b2 Putting value of c & b2 (4)2 = a2 + 6a 16 = a2 + 6a a2 + 6a − 16 = 0 a2 + 8a − 2a −16 = 0 … eagles wiki nfl